ANALYTICAL STUDY OF (3+1)-DIMENSIONAL ZAKHAROV-KUZNETSOV EQUATION

MANISH RAGHAV, ANKUSH GOEL, AND MANOJ

ABSTRACT. This article investigates the analytic solution to the (3+1)-dimensional Zakharov-Kuznetsov (ZK) equation, a nonlinear partial differential equation used to model physical phenomena in various fields, particularly plasma physics. We employ the ϕ^6 – model expansion method to derive Jacobi's elliptic, hyperbolic, trigonometric, and rational function solutions to the ZK equation. In this study, we utilize various parameter regimes to illustrate the graphical representation of the obtained solutions in both 2-dimensional and 3-dimensional formats, which helps us to understand the physical phenomena further.

2000 Mathematics Subject Classification. 35A20, 35B10, 35Q51.

Keywords and Phrases. ϕ^6 — model expansion method, (3+1)-dimensional Zakharov-Kuznetsov equation, Nonlinear Evolution Equations, Exact solutions.

1. Introduction

Over the last few decades, numerous disciplines, including but not limited to economics, biology, chemistry, engineering, and physics, have utilized nonlinear evolution equations (NLEEs) to model nonlinear processes. These equations are a type of partial differential equation that describes how a phenomenon evolves over time under the influence of nonlinear interactions. These equations have a broader class of applications in different areas such as plasma physics, nonlinear optics, fluid dynamics, quantum field theory and solid mechanics. NLEEs investigate fluid flow in various contexts, including turbulent flow modelling and fluid-structure interaction. NLEEs are also used to model metal forming, investigate the mechanical behavior of solids, and model the deformation of materials under various loading circumstances. To gain insight into nonlinear phenomena, one has to find exact solutions to the NLEEs. Exact solutions not only enhance our understanding of physical systems, but they also serve as a benchmark to assess the accuracy, stability, and convergence of numerical algorithms. Consequently, the search for exact solutions of NLEEs has been a major focus of research. However, due to the inherent complexity of nonlinear terms, finding exact solutions to these equations is often challenging. Because of the development of powerful computer algebra systems like Maple and Mathematica, the search for exact solutions to NLEEs has attracted much attention recently. These tools allow researchers to execute complex and time-consuming algebraic calculations more effectively. Our literature review indicates that no single method can universally solve all nonlinear evolution equations, as each of these methods has limited applicability. Although many effective analytical techniques for solving NLEEs have been developed, including the decomposition method [7, 8], the tanhfunction method [16, 17], the Hirota's bilinear transformation method [9, 10, 12, 23],

Submission Date: July 26, 2024.

the sine-cosine method [24, 25], the homogeneous balance method [6, 21], the $\left(\frac{G'}{G}\right)$ expansion method [2, 22], the $\exp(-\phi(\xi))$ expansion method [1, 11, 13, 20] and the new ϕ^6 -model expansion method [4, 27, 28, 29].

In 1974, Zakharov and Kuznetsov proposed the ZK equation [5, 14, 19, 26]

(1)
$$u_t + A_1 u u_x + A_2 u_{xxx} + A_3 (u_{yyx} + u_{zzx}) = 0,$$

where the coefficients A_1 , A_2 , and A_3 are constants. This equation resulted from their experimental analysis of nonlinear dust acoustic waves through the use of reductive perturbation method for studying magnetized three component dusty plasma with negatively charged dust particles, isothermal ions and electrons. The investigation confirms the existence of three-dimensional solitons in low-pressure magnetized plasma that travel along magnetic fields, as these solitons display decay characteristics in all directions. This revolutionary discovery not only increased our theoretical understanding of nonlinear wave processes in plasma, but it also demonstrated the ZK equation's practical applicability. Researchers have utilized various approaches to derive exact solutions for the ZK equation. In particular, [18] utilized Lie symmetry analysis together with the (G'/G)-expansion method and the extended tanhfunction method to discover solitary wave solutions as well as periodic solutions and singular periodic solutions. Using the modified extended direct algebraic method, [15] obtained various soliton solutions, including bell-shaped solitons, anti-bell periodic solitons, dark solitons, bright solitons, and periodic bright-dark solitary waves. Furthermore, in [3], the authors obtain numerous structured and illustrative soliton solutions using the enhanced modified simple equation approach. Soliton solutions are crucial for investigating the dynamics of dust ion acoustic waves. These solutions are also directly relevant to experimental plasma setups, providing valuable insights for laboratory investigations and underscoring the importance of the ZK equation in plasma physics. Recognizing the significance of the ZK equation and their exact solutions, this study aims to use the new ϕ^6 -model expansion method to explore Jacobi's elliptic, hyperbolic, trigonometric, and rational function solutions to (1).

The remainder of the paper comprises five sections starting from Section 2, which introduces the detailed method description. Section 3, demonstrates the soliton solutions of (1). In Section 4 the obtained solutions are displayed through 3— D and 2— D graphical representations. In Section 5, we discuss the physical interpretation of the results obtained and the conclusions are discussed in Section 6.

2. Description of the ϕ^6 -model expansion method

Consider a general nonlinear partial differential equation of the form

(2)
$$G(u, u_x, u_y, u_z, u_t, u_{xx}, u_{yy}, u_{zz}, u_{tt}...) = 0,$$

where G is a polynomial function involving the unknown function u and its partial derivatives of various orders. The function u depends on the variables x, y, z and t.

The fundamental steps of the method are outlined as follows:

Step 1: We utilize the wave transformation

(3)
$$u(x, y, z, t) = u(\xi), \ \xi = kx + ly + mz - wt,$$

where k, l, m and w are non zero constants, to transform (2) into the following nonlinear ordinary differential equation:

(4)
$$F(u, u', u'', u''', \dots) = 0,$$

here F represents a polynomial expression in $u(\xi)$ with their total derivatives.

Step 2: Assuming that solution to (4) is as follows:

(5)
$$u(\xi) = \sum_{i=0}^{2M} a_i \phi^i(\xi),$$

where M is a positive integer, and the coefficients a_i (i=0...2M) are unknown parameters that will be systematically determined later. Meanwhile, the function $\phi(\xi)$ is subject to the following nonlinear ordinary differential equations:

$$\phi'^{2}(\xi) = b_0 + b_2 \phi^{2}(\xi) + b_4 \phi^{4}(\xi) + b_6 \phi^{6}(\xi),$$

(6)
$$\phi''(\xi) = b_2 \phi(\xi) + 2b_4 \phi^3(\xi) + 3b_6 \phi^5(\xi),$$

where b_i (i = 0, 2, 4, 6) are real constants to be found later.

Step 3: The solution to (6) is widely known,

(7)
$$\phi(\xi) = \frac{P(\xi)}{\sqrt{fP^2(\xi) + q}}.$$

where $(fP^2(\xi) + g) > 0$ and $P(\xi)$ is a solution of the Jacobian elliptic equation:

(8)
$$P'^{2}(\xi) = c_0 + c_2 P^{2}(\xi) + c_4 P^{4}(\xi),$$

where c_i (i = 0, 2, 4) are constants that need to be found later, while our sources f and g are provided by,

(9)
$$f = \frac{b_4(c_2 - b_2)}{(c_2 - b_2)^2 + 3c_0c_4 - 2c_2(c_2 - b_2)},$$

(10)
$$g = \frac{3c_0b_4}{(c_2 - b_2)^2 + 3c_0c_4 - 2c_2(c_2 - b_2)},$$

under the condition of restriction

(11)
$$b_4^2(c_2 - b_2)(9c_0c_4 - (c_2 - b_2)(2c_2 + b_2)) + 3b_6(3c_0c_4 - (c_2^2 - b_2^2))^2 = 0.$$

Step 4: The widely recognized Jacobi's elliptic solutions to (8) are listed in Table 1, where 0 < r < 1 defines the modulus of the Jacobian elliptic functions. Moreover, trigonometric and hyperbolic functions are the degenerates of these functions when $r \to 0$ and $r \to 1$, respectively, as given in Table 2.

Step 5: Equation (2) can be solved as Jacobi's elliptic function solutions by substituting (7) and (8) into (5).

No.	c_0	c_2	c_4	$P(\xi)$
1.	1	$-(1+r^2)$	r^2	$sn(\xi)$ or $cd(\xi)$
2.	$1 - r^2$	$2r^2 - 1$	$-r^2$	$cn(\xi)$
3.	$r^2 - 1$	$2 - r^2$	-1	$dn(\xi)$
4.	r^2	$-(1+r^2)$	1	$ns(\xi)$ or $dc(\xi)$
5.	$-r^2$	$2r^2 - 1$	$1 - r^2$	$nc(\xi)$
6.	-1	$2 - r^2$	$-(1-r^2)$	$nd(\xi)$
7.	1	$2 - r^2$	$1 - r^2$	$sc(\xi)$
8.	1	$2r^2 - 1$	$-r^2(1-r^2)$	$sd(\xi)$
9.	$1 - r^2$	$2 - r^2$	1	$cs(\xi)$
10.	$-r^2(1-r^2)$	$2r^2 - 1$	1	$ds(\xi)$
11.	$\frac{1-r^2}{4}$	$\frac{1+r^2}{2}$	$ \frac{1-r^2}{4} $ $ \frac{-1}{4} $ $ \frac{1}{4} $	$nc(\xi) \pm sc(\xi) \text{ or } \frac{cn(\xi)}{1 \pm sn(\xi)}$
12.	$\frac{-(1-r^2)^2}{4}$	$\frac{1+r^2}{2}$	$\frac{-1}{4}$	$rcn(\xi) \pm dn(\xi)$
13.	$\frac{1}{4}$	$\frac{1-2r^2}{2}$	$\frac{1}{4}$	$\frac{sn(\xi)}{1 \pm cn(\xi)}$
14.	$\frac{1}{4}$	$ \frac{1+r^2}{2} $ $ \frac{1-2r^2}{2} $ $ \frac{1+r^2}{2} $	$\frac{(1-r^2)^2}{4}$	$\frac{sn(\xi)}{cn(\xi)\pm dn(\xi)}$

Table 1

Table 2

No.	Symbols	Functions	$r \to 0$	$r \rightarrow 1$
1.	$cn(\xi)$	$cn(\xi,r)$	$\cos(\xi)$	$\operatorname{sech}(\xi)$
2.	$sn(\xi)$	$sn(\xi,r)$	$\sin(\xi)$	$\tanh(\xi)$
3.	$sc(\xi)$	$sc(\xi,r)$	$\tan(\xi)$	$\sinh(\xi)$
4.	$cs(\xi)$	$cs(\xi,r)$	$\cot(\xi)$	$\operatorname{csch}(\xi)$
5.	$ns(\xi)$	$ns(\xi,r)$	$\csc(\xi)$	$\coth(\xi)$
6.	$dn(\xi)$	$dn(\xi,r)$	1	$\operatorname{sech}(\xi)$
7.	$sd(\xi)$	$sd(\xi,r)$	$\sin(\xi)$	$\sinh(\xi)$
8.	$cd(\xi)$	$cd(\xi,r)$	$\cos(\xi)$	1
9.	$ds(\xi)$	$ds(\xi,r)$	$\csc(\xi)$	$\operatorname{csch}(\xi)$
10.	$nc(\xi)$	$nc(\xi,r)$	$\sec(\xi)$	$\cosh(\xi)$

3. Solving (1) using aforementioned method

We make the following assumption to answer (1) using the ϕ^6 -model expansion method:

(12)
$$u(x, y, z, t) = u(\xi),$$
$$\xi = kx + ly + mz - wt$$

where $u(\xi)$ is a real function. After substituting (12) into (1), we get the following ordinary differential equation:

(13)
$$-wu(\xi) + \frac{A_1ku^2(\xi)}{2} + \left(A_2k^3 + A_3kl^2 + A_3km^2\right)u''(\xi) = 0.$$

Now balancing $u^{2}(\xi)$ and $u''(\xi)$ in (13), we get M=2, hence (13) has the solution (14) $u(\xi) = a_{0} + a_{1}\phi + a_{2}\phi^{2} + a_{3}\phi^{3} + a_{4}\phi^{4},$

where a_0 , a_1 , a_2 , a_3 and a_4 are constants to be found later.

Inserting (14) along with (6) in (13) and equating the coefficients of like powers of $\phi^{i}(\xi)$ (i = 0, 1, 2, ...8) to zero, we get the following algebraic equations:

$$\phi^0: 2a_2b_0A_2k^3 + \frac{1}{2}A_1ka_0^2 + 2a_2b_0A_3kl^2 + 2a_2b_0A_3km^2 - wa_0 = 0,$$

$$\phi^1: k^3A_2a_1b_2+6k^3A_2a_3b_0+kl^2A_3a_1b_2+6kl^2A_3a_3b_0+km^2A_3a_1b_2+6km^2A_3a_3b_0+kA_1a_0a_1-wa_1=0,$$

$$\begin{array}{l} \phi^2: \frac{1}{2}A_1ka_1^2 + 4a_2b_2A_2k^3 + 12a_4b_0A_2k^3 + A_1ka_0a_2 - wa_2 + 4a_2b_2A_3kl^2 + 4a_2b_2A_3km^2 + \\ 12a_4b_0A_3kl^2 + 12a_4b_0A_3km^2 = 0, \end{array}$$

$$\phi^3: 2k^3A_2a_1b_4 + 9k^3A_2a_3b_2 + 2kl^2A_3a_1b_4 + 9kl^2A_3a_3b_2 + 2km^2A_3a_1b_4 + 9km^2A_3a_3b_2 + kA_1a_0a_3 + kA_1a_1a_2 - wa_3 = 0,$$

$$\phi^4: \frac{1}{2}A_1ka_2^2 + 6a_2b_4A_2k^3 + 16a_4b_2A_2k^3 + A_1ka_0a_4 + A_1ka_1a_3 - wa_4 + 6a_2b_4A_3kl^2 + 6a_2b_4A_3km^2 + 16a_4b_2A_3kl^2 + 16a_4b_2A_3km^2 = 0,$$

$$\phi^5: 3k^3A_2a_1b_6 + 12k^3A_2a_3b_4 + 3kl^2A_3a_1b_6 + 12kl^2A_3a_3b_4 + 3km^2A_3a_1b_6 + 12km^2A_3a_3b_4 + kA_1a_1a_4 + kA_1a_2a_3 = 0,$$

$$\phi^6: \frac{1}{2}A_1ka_3^2 + 8a_2b_6A_2k^3 + 20a_4b_4A_2k^3 + A_1ka_2a_4 + 20a_4b_4A_3km^2 + 8a_2b_6A_3kl^2 + 8a_2b_6A_3km^2 + 20a_4b_4A_3kl^2 = 0,$$

$$\phi^7: 15k^3A_2a_3b_6 + 15kl^2A_3a_3b_6 + 15km^2A_3a_3b_6 + kA_1a_3a_4 = 0,$$

$$\phi^8: \frac{1}{2}A_1ka_4^2 + 24a_4b_6A_2k^3 + 24a_4b_6A_3kl^2 + 24a_4b_6A_3km^2 = 0,$$
(15)

Solving the algebraic system (15) by using Maple, we obtain the following results:

$$a_0 = a_0, \ a_1 = 0, \ a_2 = \frac{-12b_4\left((l^2 + m^2)A_3 + k^2A_2\right)}{A_1}, \ a_3 = 0, \ a_4 = 0,$$

$$b_0 = \frac{1}{48} \frac{\left(a_0 k A_1 - 2 w\right) a_0 A_1}{\left(\left(l^2 + m^2\right) A_3 + k^2 A_2\right)^2 k b_4}, \ b_2 = \frac{1}{4} \frac{-a_0 k A_1 + w}{\left(\left(l^2 + m^2\right) A_3 + k^2 A_2\right) k}, \ b_4 = b_4, \ b_6 = 0.$$

(16)

Using Eqs. (7), (14), and (16) as well as the Jacobi elliptic functions provided in the table above, we obtain the following exact solutions to (1):

3.1. If $c_0 = 1$, $c_2 = -(1 + r^2)$ and $c_4 = r^2$, thus $P(\xi) = sn(\xi)$ or $cd(\xi)$, and we obtained solutions listed below:

(17)
$$u_1(x, y, z, t) = a_0 + a_2 \frac{sn^2(\xi)}{fsn^2(\xi) + g},$$

or

(18)
$$u_2(x, y, z, t) = a_0 + a_2 \frac{cd^2(\xi)}{fcd^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{-b_4 (1 + b_2 + r^2)}{(r^2 + b_2 + 1)^2 + 3r^2 - 2r (r^2 + b_2 + 1)^2 - 2},$$

$$g = \frac{3b_4}{(r^2 + b_2 + 1)^2 + 3r^2 - 2r(r^2 + b_2 + 1)^2 - 2},$$

under the condition of restriction

$$-b_4^2 (1 + b_2 + r^2) (9r^2 - (1 + b_2 + r^2) (2 - b_2 + 2r^2)) = 0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 1$, then we obtained solution listed below:

(19)
$$u_{1.1}(x, y, z, t) = a_0 + a_2 \frac{\tanh^2(\xi)}{f \tanh^2(\xi) + g},$$

while, if $r \to 0$, then we obtained solutions listed below:

(20)
$$u_{1.2}(x, y, z, t) = a_0 + a_2 \frac{\sin^2(\xi)}{f \sin^2(\xi) + q},$$

or

(21)
$$u_{2.2}(x, y, z, t) = a_0 + a_2 \frac{\cos^2(\xi)}{f \cos^2(\xi) + g}.$$

3.2. If $c_0 = 1 - r^2$, $c_2 = 2r^2 - 1$ and $c_4 = -r^2$, thus $P(\xi) = cn(\xi)$, and we obtained solution listed below:

(22)
$$u_3(x, y, z, t) = a_0 + a_2 \frac{cn^2(\xi)}{fcn^2(\xi) + a},$$

where our sources for f and g are

$$f = \frac{b_4 \left(-1 - b_2 + 2r^2\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

$$g = \frac{3b_4 \left(-r^2 + 1\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

under the condition of restriction

$$b_4^2 \left(-1 - b_2 + 2r^2 \right) \left(-9r^2 \left(-r^2 + 1 \right) - \left(-1 - b_2 + 2r^2 \right) \left(-2 + b_2 + 4r^2 \right) \right) = 0,$$

where $\xi = kx + ly + mz - wt$.

3.3. If $c_0 = r^2 - 1$, $c_2 = 2 - r^2$ and $c_4 = -1$, thus $P(\xi) = dn(\xi)$, and we obtained solution listed below:

(23)
$$u_4(x, y, z, t) = a_0 + a_2 \frac{dn^2(\xi)}{f dn^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{-b_4 \left(-2 + b_2 + r^2\right)}{\left(r^2 + b_2 - 2\right)^2 - 3r^2 + 7 - 2r\left(r^2 + b_2 - 2\right)^2},$$

$$g = \frac{3b_4 (r^2 - 1)}{(r^2 + b_2 - 2)^2 - 3r^2 + 7 - 2r (r^2 + b_2 - 2)^2},$$

under the condition of restriction

$$-b_4^2(-2+b_2+r^2)(-9r^2+9+(-2+b_2+r^2)(4+b_2-2r^2))=0,$$

where $\xi = kx + ly + mz - wt$.

3.4. If $c_0 = r^2$, $c_2 = -(1+r^2)$ and $c_4 = 1$, thus $P(\xi) = ns(\xi)$ or $dc(\xi)$, and we obtained solutions listed below:

(24)
$$u_5(x, y, z, t) = a_0 + a_2 \frac{ns^2(\xi)}{fns^2(\xi) + g},$$

or

(25)
$$u_6(x, y, z, t) = a_0 + a_2 \frac{dc^2(\xi)}{fdc^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{-b_4 (1 + b_2 + r^2)}{(r^2 + b_2 + 1)^2 + 3r^2 - 2r (r^2 + b_2 + 1)^2 - 2},$$

$$g = \frac{3r^2b_4}{(r^2 + b_2 + 1)^2 + 3r^2 - 2r(r^2 + b_2 + 1)^2 - 2},$$

under the condition of restriction

$$-b_4^2 (1 + b_2 + r^2) (9r^2 - (1 + b_2 + r^2) (2 - b_2 + 2r^2)) = 0$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 1$, then we obtained solution listed below:

(26)
$$u_{5.1}(x, y, z, t) = a_0 + a_2 \frac{\coth^2(\xi)}{f \coth^2(\xi) + g}.$$

(27)
$$u_{6.1}(x, y, z, t) = a_0 + a_2 \frac{\operatorname{csch}^2(\xi)}{f \operatorname{csch}^2(\xi) + g}.$$

3.5. If $c_0 = -r^2$, $c_2 = 2r^2 - 1$ and $c_4 = 1 - r^2$, thus $P(\xi) = nc(\xi)$, and we obtained solution listed below:

(28)
$$u_7(x, y, z, t) = a_0 + a_2 \frac{nc^2(\xi)}{fnc^2(\xi) + g},$$

where our sources for f and q are

$$f = \frac{b_4 \left(-1 - b_2 + 2r^2\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$
$$g = \frac{-3r^2b_4}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

under the condition of restriction

$$b_4^2 \left(-1 - b_2 + 2r^2\right) \left(-9r^2 \left(-r^2 + 1\right) - \left(-1 - b_2 + 2r^2\right) \left(-2 + b_2 + 4r^2\right)\right) = 0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 1$, then we obtained solution listed below:

(29)
$$u_{7.1}(x, y, z, t) = a_0 + a_2 \frac{\cosh^2(\xi)}{f \cosh^2(\xi) + g}.$$

3.6. If $c_0 = -1$, $c_2 = 2 - r^2$ and $c_4 = -(1 - r^2)$, thus $P(\xi) = nd(\xi)$, and we obtained solution listed below:

(30)
$$u_8(x, y, z, t) = a_0 + a_2 \frac{nd^2(\xi)}{fnd^2(\xi) + q},$$

where our sources for f and g are

$$f = \frac{-b_4 (-2 + b_2 + r^2)}{(r^2 + b_2 - 2)^2 - 3r^2 + 7 - 2r (r^2 + b_2 - 2)^2},$$
$$g = \frac{-3b_4}{(r^2 + b_2 - 2)^2 - 3r^2 + 7 - 2r (r^2 + b_2 - 2)^2},$$

under the condition of restriction

$$-b_4^2 \left(-2 + b_2 + r^2\right) \left(-9r^2 + 9 + \left(-2 + b_2 + r^2\right) \left(4 + b_2 - 2r^2\right)\right) = 0,$$
 where $\xi = kx + ly + mz - wt$.

3.7. If $c_0 = 1$, $c_2 = 2 - r^2$ and $c_4 = 1 - r^2$, thus $P(\xi) = sc(\xi)$, and we obtained solution listed below:

(31)
$$u_9(x, y, z, t) = a_0 + a_2 \frac{sc^2(\xi)}{fsc^2(\xi) + q},$$

where our sources for f and g are

$$f = \frac{-b_4 (-2 + b_2 + r^2)}{(r^2 + b_2 - 2)^2 - 3r^2 + 7 - 2r (r^2 + b_2 - 2)^2},$$
$$g = \frac{3b_4}{(r^2 + b_2 - 2)^2 - 3r^2 + 7 - 2r (r^2 + b_2 - 2)^2},$$

under the condition of restriction

$$-b_4^2 \left(-2 + b_2 + r^2\right) \left(-9r^2 + 9 + \left(-2 + b_2 + r^2\right) \left(4 + b_2 - 2r^2\right)\right) = 0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 1$, then we obtained solution listed below:

(32)
$$u_{9.1}(x, y, z, t) = a_0 + a_2 \frac{\sinh^2(\xi)}{f \sinh^2(\xi) + g},$$

while, if $r \to 0$, then we obtained solution listed below:

(33)
$$u_{9.2}(x, y, z, t) = a_0 + a_2 \frac{\tan^2(\xi)}{f \tan^2(\xi) + g}.$$

3.8. If $c_0 = 1$, $c_2 = 2r^2 - 1$ and $c_4 = -r^2(1 - r^2)$, thus $P(\xi) = sd(\xi)$, we obtained solution listed below:

(34)
$$u_{10}(x, y, z, t) = a_0 + a_2 \frac{sd^2(\xi)}{fsd^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{b_4 \left(-1 - b_2 + 2r^2\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

$$g = \frac{3b_4}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

under the condition of restriction

$$b_4^2 \left(-1 - b_2 + 2r^2 \right) \left(-9r^2 \left(-r^2 + 1 \right) - \left(-1 - b_2 + 2r^2 \right) \left(-2 + b_2 + 4r^2 \right) \right) = 0,$$

where $\xi = kx + ly + mz - wt$.

3.9. If $c_0 = 1 - r^2$, $c_2 = 2 - r^2$ and $c_4 = 1$, thus $P(\xi) = cs(\xi)$, and we obtained solution listed below:

(35)
$$u_{11}(x, y, z, t) = a_0 + a_2 \frac{cs^2(\xi)}{fcs^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{-b_4 \left(-2 + b_2 + r^2\right)}{\left(r^2 + b_2 - 2\right)^2 - 3r^2 + 7 - 2r\left(r^2 + b_2 - 2\right)^2},$$
$$g = \frac{3b_4 \left(-r^2 + 1\right)}{\left(r^2 + b_2 - 2\right)^2 - 3r^2 + 7 - 2r\left(r^2 + b_2 - 2\right)^2},$$

under the condition of restriction

$$-b_4^2 \left(-2 + b_2 + r^2\right) \left(-9r^2 + 9 + \left(-2 + b_2 + r^2\right) \left(4 + b_2 - 2r^2\right)\right) = 0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 0$, then we obtained solution listed below:

(36)
$$u_{11.2}(x, y, z, t) = a_0 + a_2 \frac{\cot^2(\xi)}{f \cot^2(\xi) + g}.$$

3.10. If $c_0 = -r^2(1-r^2)$, $c_2 = 2r^2 - 1$ and $c_4 = 1$, thus $P(\xi) = ds(\xi)$, and we obtained solution listed below:

(37)
$$u_{12}(x, y, z, t) = a_0 + a_2 \frac{ds^2(\xi)}{f ds^2(\xi) + g},$$

where our sources for f and g are

$$f = \frac{b_4 \left(-1 - b_2 + 2r^2\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2 \left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - b_2 + 2r^2\right)},$$

$$g = \frac{3r^2b_4\left(r^2 - 1\right)}{\left(-1 - b_2 + 2r^2\right)^2 - 3r^2\left(-r^2 + 1\right) - 2\left(2r^2 - 1\right)\left(-1 - c_2 + 2r^2\right)},$$

under the condition of restriction

$$b_4^2 \left(-1 - b_2 + 2r^2\right) \left(-9r^2 \left(-r^2 + 1\right) - \left(-1 - b_2 + 2r^2\right) \left(-2 + b_2 + 4r^2\right)\right) = 0$$

where $\xi = kx + ly + mz - wt$.

3.11. If $c_0 = \frac{1-r^2}{4}$, $c_2 = \frac{1+r^2}{2}$ and $c_4 = \frac{1-r^2}{4}$, thus $P(\xi) = nc(\xi) \pm sc(\xi)$ or $\frac{cn(\xi)}{1 \pm sn(\xi)}$, and we obtained the solutions listed below:

(38)
$$u_{13}(x, y, z, t) = a_0 + a_2 \frac{(nc(\xi) \pm sc(\xi))^2}{f(nc(\xi) \pm sc(\xi))^2 + g},$$

or

(39)
$$u_{14}(x, y, z, t) = a_0 + a_2 \frac{cn^2(\xi)}{fcn^2(\xi) + g(1 \pm sn(\xi))^2},$$

where our sources for f and g are

$$f = \frac{-8b_4 \left(1 - 2b_2 + r^2\right)}{r^4 + 14r^2 - 16b_2^2 + 1},$$

$$g = \frac{12b_4 (r^2 - 1)}{r^4 + 14r^2 - 16b_2^2 + 1},$$

under the condition of restriction

$$\frac{1}{32}b_4^2\left(1-2b_2+r^2\right)\left(r^4+8r^2b_2-34r^2+16b_2^2+8b_2+1\right)=0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 0$, then we obtained the solutions listed below:

(40)
$$u_{13.2}(x, y, z, t) = a_0 + a_2 \frac{(\sec(\xi) \pm \tan(\xi))^2}{f(\sec(\xi) \pm \tan(\xi))^2 + g},$$

or

(41)
$$u_{14.2}(x, y, z, t) = a_0 + a_2 \frac{\cos^2(\xi)}{f(\cos^2(\xi)) + g(1 \pm \sin(\xi))^2}$$

3.12. If $c_0 = \frac{-(1-r^2)^2}{4}$, $c_2 = \frac{1+r^2}{2}$ and $c_4 = \frac{-1}{4}$, thus $P(\xi) = rcn(\xi) \pm dn(\xi)$, and we obtained the solution listed below:

(42)
$$u_{15}(x, y, z, t) = a_0 + a_2 \frac{(rcn(\xi) \pm dn(\xi))^2}{f (rcn(\xi) \pm dn(\xi))^2 + g},$$

where our sources for f and q are

$$f = \frac{-8b_4 \left(1 - 2b_2 + r^2\right)}{r^4 + 14r^2 - 16b_2^2 + 1},$$

$$g = \frac{12b_4 \left(r^2 - 1\right)^2}{r^4 + 14r^2 - 16b_2^2 + 1},$$

under the condition of restriction

$$\frac{1}{32}b_4^2\left(1-2b_2+r^2\right)\left(r^4+8r^2b_2-34r^2+16b_2^2+8b_2+1\right)=0,$$

where $\xi = kx + ly + mz - wt$.

3.13. If $c_0 = \frac{1}{4}$, $c_2 = \frac{1-2r^2}{2}$ and $c_4 = \frac{1}{4}$, thus $P(\xi) = \frac{sn(\xi)}{1 \pm cn(\xi)}$, and we obtained solution listed below:

(43)
$$u_{16}(x, y, z, t) = a_0 + a_2 \frac{sn^2(\xi)}{fsn^2(\xi) + g(1 \pm cn(\xi))^2},$$

where our sources for f and g are

$$f = \frac{8b_4 \left(-1 + 2b_2 + 2r^2\right)}{16r^4 - 16r^2 - 16b_2^2 + 1},$$

$$g = \frac{-12b_4}{16r^4 - 16r^2 - 16b_2^2 + 1},$$

under the condition of restriction

$$\frac{1}{32}b_4^2\left(-1+2b_2+2r^2\right)\left(32r^4+16r^2b_2-32r^2-16b_2^2-8b_2-1\right)=0,$$

where $\xi = kx + ly + mz - wt$.

In particular, if $r \to 1$, then we obtained the solution listed below:

(44)
$$u_{16.1}(x, y, z, t) = a_0 + a_2 \frac{\tanh^2(\xi)}{f \tanh^2(\xi) + g (1 \pm \operatorname{sech}(\xi))^2},$$

while, if $r \to 0$, then we obtained the solution listed below:

(45)
$$u_{16.2}(x, y, z, t) = a_0 + a_2 \frac{\sin^2(\xi)}{f \sin^2(\xi) + g (1 \pm \cos(\xi))^2}.$$

3.14. If $c_0 = \frac{1}{4}$, $c_2 = \frac{1+r^2}{2}$ and $c_4 = \frac{\left(1-r^2\right)^2}{4}$, thus $P(\xi) = \frac{sn(\xi)}{cn(\xi) \pm dn(\xi)}$, and we obtained solution listed below:

(46)
$$u_{17}(x, y, z, t) = a_0 + a_2 \frac{sn^2(\xi)}{fsn^2(\xi) + g\left(cn(\xi) \pm dn(\xi)\right)^2},$$

where our sources for f and g are

$$f = \frac{-8b_4 (1 - 2b_2 + r^2)}{r^4 + 14r^2 - 16b_2^2 + 1},$$
$$g = \frac{-12b_4}{r^4 + 14r^2 - 16b_2^2 + 1},$$

under the condition of restriction

$$\frac{1}{32}c_4^2\left(1-2c_2+r^2\right)\left(r^4+8r^2c_2-34r^2+16c_2^2+8c_2+1\right)=0,$$

where $\xi = kx + ly + mz - wt$.

4. Graphical representation of some obtained solutions

To effectively illustrate the behaviour of the solutions, a few representative plots of the resolved problems are presented below.

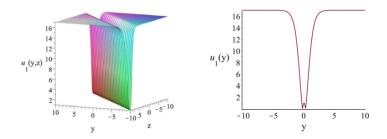


FIGURE 1. Three dimensional and two dimensional graphs of u_1 for various choice of parameters.

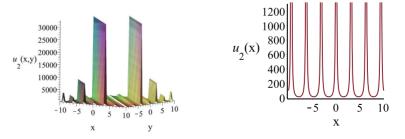


FIGURE 2. Three dimensional and two dimensional graphs of u_2 for various choice of parameters.

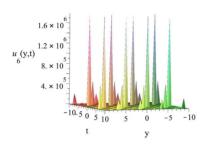
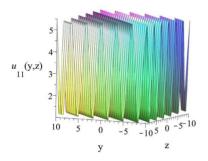




FIGURE 3. Three dimensional and two dimensional graphs of u_6 for various choice of parameters.



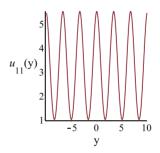
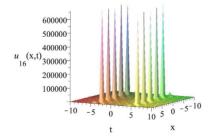


FIGURE 4. Three dimensional and two dimensional graphs of u_{11} for various choice of parameters.



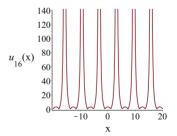


FIGURE 5. Three dimensional and two dimensional graphs of u_{16} for various choice of parameters.

5. Result and discussion

This section contains the ZK equation's exact solutions and their graphical representations. By directly comparing our findings with those presented in [3, 15, 18], we have successfully derived several novel exact solutions. The obtained solutions consist of trigonometric, hyperbolic, and Jacobi elliptic function-based solutions. We further illustrate the validity and richness of the solutions by visualizing them through 3D and 2D plots, which are created by choosing suitable parameter values that meet the constraint requirement. We employ Maple, a powerful mathematical software, to generate graphical representations of these solutions. We present a brief analysis of the solution dynamics below.

Figure 1 displays the W-shaped soliton for the solution $u_1(x, y, z, t)$ with appropriate values of parameters, x = 0, t = 0, r = 1, $A_1 = 6$, $A_2 = 3$, $A_3 = 3$, $k=l=m=1, a_0=1, b_4=1, w=-66$. These soliton solutions typically represent a localized and stable wave structure. The W-shaped profile reflects how energy distributes over two regions while maintaining the soliton's stability and localized propagation characteristic. Figure 2 displays the solution's dynamic behavior with a periodic soliton structure for the solution $u_2(x, y, z, t)$ for the appropriate values of parameters, z = 0, t = 0, r = 0, $A_1 = 6$, $A_2 = 3$, $A_3 = 3$, k = l = m = 1, $a_0 = 5$, $b_4 = 1, w = 102$. Periodic soliton solutions are unique soliton solutions that exhibit spatially or temporally periodic behavior rather than decaying to zero at infinity like traditional solitons. These solutions represent waves that propagate with stable and periodic structures. Figure 3 displays the solution's dynamic behavior with a singular soliton structure for the solution $u_6(x,y,z,t)$ for the appropriate values of parameters, x = 0, z = 0, $r = \frac{1}{2}$, $A_1 = 6$, $A_2 = 3$, $A_3 = 3$, k = l = m = 1, $a_0 = 1$, $b_4 = 3, w = -12$. Singular soliton solutions are a special wave solution characterized by singularities such as infinite amplitude, acute cusps, or discontinuities at certain places. Unlike smooth and localized regular solitons, these solutions defy traditional expectations while maintaining remarkable stability, propagating consistently under the equation's governing dynamics. Their persistence highlights the delicate balance of non-linearity and dispersion in complex systems. Figure 4 displays the solution's dynamic behavior with a periodic soliton structure for the solution $u_{11}(x,y,z,t)$ for the appropriate values of parameters, $x=0, t=0, r=\frac{1}{2}, A_1=6, A_2=3, A_3=3,$ $k=l=m=1,\,a_0=1,\,b_4=-3,\,w=-12.$ Figure 5 displays solution's dynamic behavior with a singular soliton structure for the solution $u_{16}(x,y,z,t)$ for the appropriate values of parameters, y = 0, z = 0, r = 0, $A_1 = 1$, $A_2 = 1$, $A_3 = 1$, $k = l = m = 1, a_0 = 3, b_4 = 1, w = 9.$

6. Conclusion

We address the nonlinear (3+1)-dimensional ZK equation using a recently discovered ϕ^6 -model expansion technique and obtain novel travelling wave solutions to the said equation in the form of Jacobi's elliptic functions, which can be valuable for researchers in studying and understanding the physical interpretation of the ZK equation. The obtained solutions approach trigonometric solutions when $r \to 0$ and hyperbolic solutions when $r \to 1$. These results indicate that the employed method has produced numerous novel and significant solutions to the considered equation. Furthermore, we visualize specific solutions using 3-D and 2-D graphs.

References

- [1] Abdelrahman, Mahmoud AE and Zahran, Emad HM and Khater, Mostafa MA, Exact Traveling Wave Solutions for Power law and Kerr law non Linearity Using the $Exp(-\phi(\xi))$ -expansion Method, Global Journal of Science Frontier Research 14 (2014).
- [2] Ajibola, Saheed Oluwatoyin and Sedara, Samuel Omosule, New Travelling Wave solutions of the Korteweg De Vries Equation by-(G'/G) Expansion method, Journal of Advances in Mathematics 5 (2013).
- [3] Akbar, M Ali and Kayum, Md Abdul and Osman, MS., Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+1)-dimensional ZK equations, Communications in Theoretical Physics 73 (2021), 105003.
- [4] Ali, Faiqa and Jhangeer, Adil and Mudassar, Muhammad, A complete dynamical analysis of discrete electric lattice coupled with modified Zakharov-Kuznetsov equation Partial Differential Equations in Applied Mathematics 11 (2024), 100878.
- [5] El-Labany, SK and Moslem, WM, Higher-order contributions to dust-acoustic waves in a magnetized dusty plasmas, Physica Scripta 65 (2002), 416.
- [6] Fan, Engui, Two new applications of the homogeneous balance method, Physics Letters A 265 (2000), 353-357.
- [7] G. Adomian, A review of the decomposition method and some recent results for nonlinear equation, Mathematical and Computer Modelling 13 (1990), 17-43.
- [8] G. Adomian, Solving frontier problems of physics: the decomposition method, Springer Science & Business Media 60 (2013).
- [9] Hirota, Ryogo, The direct method in soliton theory, Cambridge University Press (2004).
- [10] Kaur, Lakhveer and Wazwaz, Abdul-Majid, Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation, Nonlinear Dynamics 94 (2018), 2469-2477.
- [11] Khan, Kamruzzaman and Akbar, M Ali, Application of exp-expansion method to find the exact solutions of modified Benjamin-Bona-Mahony equation, World Applied Sciences Journal 24 (2013), 1373-1377.
- [12] K. Singh, Sudhir and Kaur, Lakhveer and Sakkaravarthi, K and Sakthivel, R and Murugesan, Dynamics of higher-order bright and dark rogue waves in a new (2+ 1)-dimensional integrable Boussinesq model, Physica Scripta 95 (2020), 115213.
- [13] K. Singh, Sudhir and Kaur, Lakhveer and Sakthivel, R and Murugesan, Computing solitary wave solutions of coupled nonlinear Hirota and Helmholtz equations, Physica A: Statistical Mechanics and its Applications 560 (2020), 125114.
- [14] Liu, Congbo and Wang, Linxue and Yang, Xue and Shi, Yuren, Transverse instability of dustacoustic solitary waves in magnetized dusty plasmas, Plasma Science and Technology 17 (2015), 298.
- [15] Lu, Dianchen and Seadawy, AR and Arshad, M and Wang, Jun, New solitary wave solutions of (3+ 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications, Results in physics 7 (2017), 899-909.
- [16] Malfliet, Willy, The tanh method: a tool for solving certain classes of non-linear PDEs, Mathematical Methods in the Applied Sciences 28 (2005), 2031-2035.
- [17] Malfliet, Willy and Hereman, Willy, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Physica Scripta 54 (1996), 563.
- [18] Matebese, BT and Adem, AR and Khalique, CM and Biswas, A., Solutions of Zakharov-Kuznetsov equation with power law nonlinearity in (1+3) dimensions, Physics of Wave Phenomena 19 (2011), 148-154.
- [19] Moslem, Waleed M and Sabry, R., Zakharov-Kuznetsov-Burgers equation for dust ion acoustic waves, Chaos, Solitons & Fractals 36 (2008), 628-634.
- [20] Seadawy, Aly R and Lu, Dianchen and Khater, Mostafa MA, Solitary wave solutions for the generalized Zakharov-Kuznetsov-Benjamin-Bona-Mahony nonlinear evolution equation, Journal of Ocean Engineering and Science 2 (2017), 137-142.
- [21] Wang, Mingliang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A 213 (1996), 279-287.
- [22] Wang, Mingliang and Li, Xiangzheng and Zhang, Jinliang, The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A 372 (2008), 417-423.

- [23] Wazwaz, Abdul-Majid, The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves, Applied Mathematics and Computation 201 (2008), 489-503.
- [24] Wazwaz, Abdul-Majid, The sine-cosine method for obtaining solutions with compact and non-compact structures, Applied Mathematics and Computation 159 (2004), 559-576.
- [25] Yusufoğlu, E and Bekir, Ahmet, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, International Journal of Computer Mathematics 83 (2006), 915-924.
- [26] Zakharov, VE and Kuznetsov, EA, On three dimensional solitons, Zhurnal Eksp. Teoret. Fiz 66 (1974), 594-597.
- [27] Zayed, Elsayed ME and Al-Nowehy, Abdul-Ghani, Many new exact solutions to the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms using three different techniques, Optik 143 (2017), 84-103.
- [28] Zayed, Elsayed ME and Al-Nowehy, Abdul-Ghani and Elshater, Mona EM, New ϕ^6 -model expansion method and its applications to the resonant nonlinear Schrödinger equation with parabolic law nonlinearity, The European Journal Plus 133 (2018), 417.
- [29] Zhou, Qin and Yao, Duanzheng and Chen, Fang, Analytical study of optical solitons in media with Kerr and parabolic-law nonlinearities, Journal of Modern Optics 60 (2013), 1652-1657.

Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk-304022, Rajasthan

Email address: manishrghv@gmail.com

Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk-304022, Rajasthan

Email address: goelankush088@gmail.com

Department of Mathematics and Statistics, Banasthali Vidyapith, Tonk-304022, Rajasthan

 $Email\ address: {\tt manojsheoran1397@gmail.com}$