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ANALYTICAL STUDY OF (3 -+ 1)-DIMENSIONAL
ZAKHAROV-KUZNETSOV EQUATION

MANISH RAGHAV, ANKUSH GOEL, AND MANOJ

ABSTRACT. This article investigates the analytic solution to the (3+1)-dimensional
Zakharov-Kuznetsov (ZK) equation, a nonlinear partial differential equation used

to model physical phenomena in various fields, particularly plasma physics. We

employ the $°— model expansion method to derive Jacobi’s elliptic, hyperbolic,

trigonometric, and rational function solutions to the ZK equation. In this study,

we utilize various parameter regimes to illustrate the graphical representation of
the obtained solutions in both 2-dimensional and 3-dimensional formats, which

helps us to understand the physical phenomena further.
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1. INTRODUCTION

Over the last few decades, numerous disciplines, including but not limited to
economics, biology, chemistry, engineering, and physics, have utilized nonlinear evo-
lution equations (NLEESs) to model nonlinear processes. These equations are a type
of partial differential equation that describes how a phenomenon evolves over time
under the influence of nonlinear interactions. These equations have a broader class
of applications in different areas such as plasma physics, nonlinear optics, fluid dy-
namics, quantum field theory and solid mechanics. NLEEs investigate fluid flow in
various contexts, including turbulent flow modelling and fluid-structure interaction.
NLEESs are also used to model metal forming, investigate the mechanical behavior of
solids, and model the deformation of materials under various loading circumstances.
To gain insight into nonlinear phenomena, one has to find exact solutions to the
NLEEs. Exact solutions not only enhance our understanding of physical systems,
but they also serve as a benchmark to assess the accuracy, stability, and convergence
of numerical algorithms. Consequently, the search for exact solutions of NLEEs has
been a major focus of research. However, due to the inherent complexity of nonlin-
ear terms, finding exact solutions to these equations is often challenging. Because of
the development of powerful computer algebra systems like Maple and Mathemat-
ica, the search for exact solutions to NLEEs has attracted much attention recently.
These tools allow researchers to execute complex and time-consuming algebraic cal-
culations more effectively. Our literature review indicates that no single method
can universally solve all nonlinear evolution equations, as each of these methods
has limited applicability. Although many effective analytical techniques for solving
NLEEs have been developed, including the decomposition method [7, 8], the tanh-
function method [16, 17], the Hirota’s bilinear transformation method [9, 10, 12, 23],
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the sine-cosine method [24, 25], the homogeneous balance method [6, 21], the (%)

expansion method [2, 22], the exp(—¢(£)) expansion method [1, 11, 13, 20] and the
new ¢%model expansion method [4, 27, 28, 29].
In 1974, Zakharov and Kuznetsov proposed the ZK equation [5, 14, 19, 26]

(1) up + Ajuty + Astgs, + A3(uyyx + uzzx) =0,

where the coefficients Ay, Ao, and A3 are constants. This equation resulted from
their experimental analysis of nonlinear dust acoustic waves through the use of reduc-
tive perturbation method for studying magnetized three component dusty plasma
with negatively charged dust particles, isothermal ions and electrons. The investiga-
tion confirms the existence of three-dimensional solitons in low-pressure magnetized
plasma that travel along magnetic fields, as these solitons display decay characteris-
tics in all directions. This revolutionary discovery not only increased our theoretical
understanding of nonlinear wave processes in plasma, but it also demonstrated the
ZK equation’s practical applicability. Researchers have utilized various approaches
to derive exact solutions for the ZK equation. In particular, [18] utilized Lie sym-
metry analysis together with the (G’/G)-expansion method and the extended tanh-
function method to discover solitary wave solutions as well as periodic solutions and
singular periodic solutions. Using the modified extended direct algebraic method,
[15] obtained various soliton solutions, including bell-shaped solitons, anti-bell peri-
odic solitons, dark solitons, bright solitons, and periodic bright-dark solitary waves.
Furthermore, in [3], the authors obtain numerous structured and illustrative soliton
solutions using the enhanced modified simple equation approach. Soliton solutions
are crucial for investigating the dynamics of dust ion acoustic waves. These solutions
are also directly relevant to experimental plasma setups, providing valuable insights
for laboratory investigations and underscoring the importance of the ZK equation
in plasma physics. Recognizing the significance of the ZK equation and their exact
solutions, this study aims to use the new ¢%-model expansion method to explore
Jacobi’s elliptic, hyperbolic, trigonometric, and rational function solutions to (1).

The remainder of the paper comprises five sections starting from Section 2, which
introduces the detailed method description. Section 3, demonstrates the soliton
solutions of (1). In Section 4 the obtained solutions are displayed through 3— D and
2— D graphical representations. In Section 5, we discuss the physical interpretation
of the results obtained and the conclusions are discussed in Section 6.

2. DESCRIPTION OF THE ¢®-MODEL EXPANSION METHOD
Consider a general nonlinear partial differential equation of the form
(2) G(uvuzauyauzautauzzyuyyauzzautt-«~) =0,

where G is a polynomial function involving the unknown function u and its partial
derivatives of various orders. The function v depends on the variables x, y, z and t.
The fundamental steps of the method are outlined as follows:
Step 1: We utilize the wave transformation

(3) u(z,y, z,t) = u(€), & = kx +ly +mz — wt,
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where k, | ,m and w are non zero constants, to transform (2) into the following
nonlinear ordinary differential equation:

(4) F(u, o/, o u",..) =0,
here F' represents a polynomial expression in u(£) with their total derivatives.

Step 2: Assuming that solution to (4) is as follows:

oM
(5) u(@) =Y ai'(€),
i=0

where M is a positive integer, and the coefficients a; (i = 0...2M) are unknown
parameters that will be systematically determined later. Meanwhile, the function
@(&) is subject to the following nonlinear ordinary differential equations:

¢"(€) = bo + b9 (€) + bad™ (&) + be®(€),
(6) ¢"(€) = baop(€) + 2b49°(€) + 3bs¢° (€),

where b; (i = 0,2,4,6) are real constants to be found later.

Step 3: The solution to (6) is widely known,

P
VIP©) +g

where (fP?(€) + g) > 0 and P(£) is a solution of the Jacobian elliptic equation:
(8) P2(&) = co + caP*(€) + eaP(€),

where ¢; (1 = 0,2,4) are constants that need to be found later, while our sources f
and g are provided by,

(7) ¢(§) =

ba(ca — b2)
9 =
©) / (c2 — b2)? + 3coeq — 2¢2(ca — b))’
(10) g= ool

(CQ — b2)2 + 3cpcy — 202(62 — bg)7

under the condition of restriction

(11) bi(CQ — bg)(96064 — (82 — bQ)(ZCQ + bg)) + 366(36004 — (Cg — b%))Q =0.

Step 4: The widely recognized Jacobi’s elliptic solutions to (8) are listed in Table
1, where 0 < r < 1 defines the modulus of the Jacobian elliptic functions. Moreover,
trigonometric and hyperbolic functions are the degenerates of these functions when
r — 0 and r — 1, respectively, as given in Table 2.

Step 5: Equation (2) can be solved as Jacobi’s elliptic function solutions by
substituting (7) and (8) into (5).
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TABLE 1

No. o o 4 P(&)

1. 1 —(1+7?%) [r? sn(€) or cd(€)

2. 1—1r2 2r7 — 1 —r? en(§)

3. r?—1 21?2 -1 dn(&)

4. r? —(1+r%) |1 ns(€) or de(€)

5. —r? 2r7 — 1 1—r? ne(§)

6. -1 21?2 —(1-1r?% nd(§)

7. 1 2 —r? 1—1r? sc(€)

8. 1 2r2 —1 —r2(1 —7?) | sd(€)

9. 1—1r?2 2—1r? 1 cs(€)

10. —r?(1—1r?) [2r? =1 1 ds(€)

11. % H‘—Q’“Q % ne(€) + se(€) or %Ef()g)

12. _(1?2)2 1+—2T2 = ren(€) + dn(€)

13. i L i 11255()5)

4. | g L= s S
TABLE 2

No. Symbols Functions |r—0 r—1

1. en(€) en(&,r) cos(§) sech(§)

2. sn(€) sn(&,r) sin(§) tanh(&)

3. sc(€) sc(&,r) tan(€) sinh (&)

4. cs(€) cs(&,r) cot (&) csch(§)

5. ns(§) ns(&,r) csc(§) coth()

6. dn(€) dn(&,r) 1 sech(§)

7. sd(§) sd(&,r) sin(&) sinh(&)

8. cd(§) cd(&,r) cos(§) 1

9. ds(§) ds(&,r) csc(€) csch(§)

10. ne(§) nc(&,r) sec(§) cosh(&)

3. SOLVING (1) USING AFOREMENTIONED METHOD

We make the following assumption to answer (1) using the ¢5-model expansion
method:

(12) u(z,y,z,t) = u(§),
E=kx+ly+mz—wt

where u(&) is a real function. After substituting (12) into (1), we get the following
ordinary differential equation:

Arku? ()
2

Now balancing u?(¢) and u”(€) in (13), we get M = 2, hence (13) has the solution
(14) u(é) = ao + a1¢ + az” + azd” + asg’,

(13) —wu(§) + + (Agk® + Askl® + Azkm?) u”(€) = 0.
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where ag, a1, as, ag and a4 are constants to be found later.
Inserting (14) along with (6) in (13) and equating the coefficients of like powers
of ¢"(§) (i =0,1,2,...8) to zero, we get the following algebraic equations:

¢0 : 2a2b0A2k3 + %Alka% + 2&2()0143]{3[2 + 2a2b0A3km2 —wag = 0,

(bl : k3A2albg + 6k3A2a3b0 + k12A3a1b2 + 6k12A3a3b0 + km2A3a1b2 + 6km2A3a3bo +
kA1a0a1 —walp = O7

(]52 : %Alka%+4a262A2k3+12a4boA2k3+A1kaoa2—wag+4a2b2A3k12+4a2b2A3km2+
12&4()0/13]{712 + 12a4b0A3km2 =0,

¢3 : 2/<:3A2a1b4+9k3A2a3b2+2k12A3a1b4+9kl2A3a3b2+2km2A3a1b4+9km2A3a3b2+
kAiapaz + kAjai1ae — waz = 0,

¢4 : %Alka% + 6aQb4A2/€3 + 16a4b2A2k:3 + Arkagas + Arkaraz — way + 6a2b4A3kl2 +
6a2b4A3km2 + 16&452143/6’[2 + 16a4b2A3k‘m2 =0,

(255 : 3I<:3A2a1 b6+12k3A2a3b4+3k12A3a1b6+12k12A3a3b4 +3km2A3a1 b6+12km2A3a3b4+

kAiaiaq + kAjasaz = 0,

(256 : %Alka?,, + 8&21)6142]{73 + 20&41)4142]{73 + Arkasayg + 20a4b4A3km2 + 8(12[)6143]612 +
8a2b6A3km2 + 20a4b4A3kl2 = 0,

(;57 : 15k3A2a3b6 + 15kl2A3a3b6 + 15km2A3a3b6 + kAjaszaq =0,

(258 : %Alkai + 24a4b6A2k3 + 24a4b6A3k12 + 24a4b6A3km2 =0,
(15)
Solving the algebraic system (15) by using Maple, we obtain the following results:

—12by ((12 + mZ)Ag + kQAQ)
Aq

ap = ag, a1 =0, az = , a3 =0, ag =0,

yo_ L (aokAr—2w)agdr 1 —agkAitw by = by, bs = 0
0 48((12+m2)A3+k2A2)2kb4’ 2 4 ((124+m?2) Az + k2A9) k’ 4 4, Op .

(16)

Using Eqgs. (7), (14), and (16) as well as the Jacobi elliptic functions provided in
the table above, we obtain the following exact solutions to (1):

3.1. If qg = 1, cg = — (1 +7?) and ¢4 = r?, thus P(£) = sn(£) or cd(§), and we
obtained solutions listed below:

2
v ) = oo+ o
or
(18) up(z,y, 2,t) = ag + as cd’(€)

fed*(§) +g’
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where our sources for f and g are

fe —by (1+ by +1?)
(r24+by+1)24+3r2 —2r (12 + by + 1) — 2

3by
(r24bo+1)2+3r2 —2r (12 + by + 1) — 2

g =
under the condition of restriction
—b3 (L+ba+72) (9% — (1 +ba +72) (2— by +2r%)) =0,

where & = kx + ly + mz — wt.
In particular, if » — 1, then we obtained solution listed below:

tanh? (&)

19 'Yy 7t = + L 12/,
(19) w(@,9,2,8) = a0+ a2 T

while, if » — 0, then we obtained solutions listed below:

sin?(¢)

(20) i@,y 2, 1) = ap + ag—n &)
F’(€) 1 g
or
2
(21) Usa(@s 9, 2, 8) = ag + az 2> &)

feos?(§) +g°

3.2. Ifcg=1—7% cy =2r> — 1 and ¢4 = —72, thus P(¢) = cn(€), and we obtained
solution listed below:

cn?(€)

(22) Ug(I,y,Z,t) =a0t a2 )
fen?(§) +g
where our sources for f and g are

by (—1 — by + 27‘2>
(—1 = by +2r2)% = 3r2 (—r2 4+ 1) — 2(2r2 — 1) (=1 — by + 2r2)’

f=

3b4 (—7‘2 + 1)
(=1 —by+2r2)* =3r2 (=r2 + 1) — 2(2r2 — 1) (=1 — by + 2r2)’

g =
under the condition of restriction
b3 (=1 — by +2r%) (=9r® (—r® +1) — (=1 = by + 2r%) (-2 + bo + 41%)) = 0,

where & = kx + ly + mz — wt.
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33. Ifcg=72—1,cp =2 —7r% and ¢4 = —1, thus P(¢) = dn(&), and we obtained
solution listed below:

dn’(¢)

(23) ug(z,y, 2,1) :a0+@2m7

where our sources for f and g are

—by (—2+ by +17)

f= (r2+by—2)> =312 + 7 —2r (12 + by — 2)*

_ 3b4(T2—1)
I 2 by 22 324720 (21 by 2)°

under the condition of restriction

—b3 (—24+bay+77%) (=92 + 9+ (=24 by +7?) (4 + by — 27%)) =0,
where £ = kx + ly + mz — wt.

3.4. If ¢ = 1%, cg = — (1+7?) and ¢4 = 1, thus P(£) = ns(§) or dc(§), and we
obtained solutions listed below:
ns*(€)

24 t) = SR .. VA,
( ) u5('r7yaz7 ) ao+a2fﬂ82(£) +g7
or
(25) ug(z,y,2,1t) = a +aﬂ

6\T,Y, %, — Qo 2fd02(§>+g’

where our sources for f and g are

—by (1 + bo +r2)
(r24by+1)24+3r2 —2r (12 + by + 1) =2

37’2b4
(P24 b+ 12 4+3r2 —2r (12 4 by +1)* — 2’

under the condition of restriction

—b3 (L+bo+72) (972 = (L+ by +7?) (2= by +2r%)) =0

where § = kz + ly + mz — wt.
In particular, if » — 1, then we obtained solution listed below:
coth? (&)

26 Y, 2,t) = ag + ag——5—""—.
(26) us.1(2,y, 2,t) = ag a2fcoth2(§)+g

csch?(€)

27 ug.1(z,y,2,t) = ag + ao————.
(27) 6.1(2,y ) 0 2fcschQ(E)—l—g
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3.5. If cg = =12, co =2r2 — 1 and ¢4 = 1 — 72, thus P(¢) = nc(€), and we obtained
solution listed below:

nc?(€)

(28) u7(z,y,2,t) = ag + a2m7

where our sources for f and g are
by (—1 — by + 2r%)
(=1 —bg +2r2)* =3r2 (=12 + 1) — 2(2r2 — 1) (=1 — by + 2r2)’
—3r2b,
(=1 —by +2r2)* = 3r2 (—r2 + 1) — 2(2r2 — 1) (=1 — by + 2r2)’
under the condition of restriction
bi (—1—ba+2r%) (=97 (—r? +1) — (=1 — by +2r%) (=2 + by + 4r%)) =0,
where £ = kx + ly + mz — wt.
In particular, if » — 1, then we obtained solution listed below:

cosh? (&)
feosh?(€) +g°

f=

g:

(29) U7‘1($,y,z,t) =ap + a2

3.6. If cp = —1, co = 2 —7r% and ¢4 = — (1 —7?), thus P(¢) = nd(§), and we
obtained solution listed below:
nd* ()
t) = bl TANES
(30) us(z,y, 2, 1) a0+a2fnd2(§)+g’

where our sources for f and g are
—ba (—2 + by + T‘Q)
(r2+by—2)° = 3r2 +7—2r (12 + by — 2)*’
—3by

(P4 by—2)2 =324 T = 2r (r2 4 by — 2)*

under the condition of restriction
b5 (=24 b2 +7%) (—9* +9+ (=24 by +7°) (4+ b2 —2r%)) =0,

where & = kx + ly + mz — wt.

f=

3.7.Ifco=1,co =272 and ¢y = 1 — 7%, thus P(¢) = sc(£), and we obtained
solution listed below:
sc*(€)
31 ug :rvyvzvt =a0+ a5~ >
(31 (e:2:1) CEGEY
where our sources for f and g are
—ba (—2 + by + TQ)
(r2+by—2)° = 3r2 +7—2r (12 + by — 2)*’
3by
(P2 4by—2)> =312 +7—2r (12 + by — 2)*
under the condition of restriction

b5 (=2+0b2+7%) (-9* +9+ (=24 by +7°) (4+ b2 —2r%)) =0,

f=

g:
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where & = kx + ly + mz — wt.
In particular, if » — 1, then we obtained solution listed below:

B sinhz(g)
<32> a5 ) = o0+ e

while, if » — 0, then we obtained solution listed below:

tan?(&)

(33) ug2(w,y,z,t) = ag + C‘than2—(§)+g'

3.8. If co =1, co =2r? — 1 and ¢4 = —r? (1 — r?), thus P(§) = sd(&), we obtained
solution listed below:

sd*(€)
34 t) = Sl VA
( ) Ulo(l’ayaZ’ ) a0+a2f8d2(§)+g7
where our sources for f and g are
fe by (—1—b2+2T2)
(1 —by+2r2)% =32 (=12 4+ 1) —2(2r2 — 1) (=1 — by + 2r2)
3by

(=1 = by +2r2)> = 3r2 (=12 +1) —2(2r2 = 1) (=1 — by + 2r2)’
under the condition of restriction

b (=1 — by +2r%) (=9r? (—1? + 1) — (=1 — by + 2r?) (=2 + by + 41%)) = 0,

where & = kx + ly + mz — wt.

g:

3.9.Ifcg =1—71% cg =2—72and ¢4 = 1, thus P(§) = cs(¢), and we obtained
solution listed below:

cs?(¢)

(35) u1(w,y,2,t) = “0”2%’

where our sources for f and g are
—by (=2 + by +1?)
(12 4+ by —2)2 = 3r2 47— 2r (r2 + by — 2)*’
3by (—1"2 + 1)
(r2 4+ by —2)%> = 3r2 4+ 7 —2r (r2 + by — 2)*’
under the condition of restriction
—b3 (=24 ba+7%) (-9 + 9+ (=24 by +17) (4 + by — 2r%)) =0,

where £ = kx + ly + mz — wt.

In particular, if » — 0, then we obtained solution listed below:

cot?(€)
feot?(§) +g°

=

g:

(36) ui2(z,y, 2, t) = ap + az

549
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3.10. If cg = =12 (1 =7?), 2 = 2r? — 1 and ¢4 = 1, thus P(§) = ds(€), and we
obtained solution listed below:

ds*(¢)

(37) U12(1’7y,27t) :a0+a2m7

where our sources for f and g are

. b (—1 — by +2r)
(1= by+2r2)% =32 (—r2 4+ 1) —2(2r2 — 1) (=1 — by + 2r2)’

B 3r2by (r2 —1)
I Tl 22?32 (2 1) 222 1) (-1 et 212

under the condition of restriction

b3 (=1 —bo+2r%) (=9r? (=r? +1) — (=1 — by +2r%) (=2 + by + 4%)) = 0,

where £ = kx + ly + mz — wt.

BAL. If g = 15, & = M= and ey = 157, thus P(§) = ne(€) # sc(€) or 5,

and we obtained the solutions listed below:

o (nel®) £ se(€)?

(38) u13(I,y,Z,t) =ao+ Qf(nc(g):l:sc(f))Q-l-g’
o en?(6)

(39) ur4(2,y,2,t) = ao + 2Fen2(€) + g(1 & sn(€)2’

where our sources for f and g are

o —8by (1 — 2by + 7“2)
C ot 4 1472 — 1662 + 17

126y (P2 - 1)
C ot 41472 — 1663 + 1

under the condition of restriction

g

1
ﬁbi (1—2by 4+ 7?) (r* 4 8r%by — 347% + 16b3 + 8by + 1) = 0,

where £ = kx + ly + mz — wt.
In particular, if » — 0, then we obtained the solutions listed below:

_ (sec(€) + tan(€))?
(40) uiz2(x,y, z,t) = ap + a2f(sec(§) Fan(€)? 1 g’
or
(41) ’U14_2(1‘7 Y, 2, t) = agp + as 0032(6)

f(eos*(€)) + g(1 £ sin(§))>
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—(1—r2)?
3.12. If ¢p = %, co = H;"Z and ¢4 = =, thus P(£) = ren(€) +dn(€), and we
obtained the solution listed below:

(ren(€) + dn(€))?
2

(42) U15(‘T’y7 Z’t) =ao+ an (rcn(ﬁ) + dn(&)) +ty9

’

where our sources for f and g are

f— —8by (1 — 2by +7%)
Cord 4 1492 — 1663 + 17

12 (2 - 1)
ot 14r2 — 1663 + 17

g
under the condition of restriction
1
3—2b§ (1 —2by +7%) (r* + 8r%by — 347% + 16b3 + 8by + 1) = 0,

where § = kz + ly + mz — wt.

3.13. If ¢ = %, co = 1*2%2 and ¢4 = %, thus P(§) = %, and we obtained

solution listed below:

sn?(€)
fsn2(¢)+g(1+ cn(f))2

(43) Ulﬁ(l’, Y, 2, t) =ap + az

)

where our sources for f and g are

;o 8bs (—1 + 2by + 2r?)
1674 — 1612 — 1663 + 1’

_ —12by
1674 — 1672 — 1663 + 1’

g
under the condition of restriction
1
3—2@21 (=14 2by + 2r?) (32" + 167%by — 32r% — 16b3 — 8by — 1) =0,

where £ = kx + ly + mz — wt.
In particular, if » — 1, then we obtained the solution listed below:

tanh? (&)
ftanhZ(f) +g(1+ sech(f))27

while, if » — 0, then we obtained the solution listed below:

sin?(€) .
fsin?(€) + g (1 % cos(€))?

(44) u16.1(,y, 2,t) = ag + az

(45) ulG.Q(‘Ta Y, 2, t) =ap + a2
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_r2)?
= % and ¢y = OT), thus P(¢) = —=__ and we

_ 1
3.14. If ¢ = en(§)+dn(€)’

)
obtained solution listed below:

sn(€)
Fsn2(€) + g (en(€) £ dn(€))*’

(46) U17<.’177 Y, z, t) =ap + az

where our sources for f and g are
o (12 4 )
C ot 41472 — 1663 + 17
—12by
rd+ 1472 — 1663 + 1’

g=
under the condition of restriction
%ci (1 —2co+7%) (r* 4 8r%cy — 34r% + 16¢5 + 8¢z + 1) = 0,
where ¢ = kx + ly + mz — wt.

4. GRAPHICAL REPRESENTATION OF SOME OBTAINED SOLUTIONS

To effectively illustrate the behaviour of the solutions, a few representative plots
of the resolved problems are presented below.
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FIGURE 1. Three dimensional and two dimensional graphs of u; for
various choice of parameters.
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FIGURE 2. Three dimensional and two dimensional graphs of us for
various choice of parameters.
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FI1GURE 4. Three dimensional and two dimensional graphs of w1y for
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5. RESULT AND DISCUSSION

This section contains the ZK equation’s exact solutions and their graphical rep-
resentations. By directly comparing our findings with those presented in [3, 15, 18],
we have successfully derived several novel exact solutions. The obtained solutions
consist of trigonometric, hyperbolic, and Jacobi elliptic function-based solutions.
We further illustrate the validity and richness of the solutions by visualizing them
through 3D and 2D plots, which are created by choosing suitable parameter values
that meet the constraint requirement. We employ Maple, a powerful mathematical
software, to generate graphical representations of these solutions. We present a brief
analysis of the solution dynamics below.

Figure 1 displays the W-shaped soliton for the solution w;(x,y, z,t) with appro-
priate values of parameters, x = 0, t = 0, r = 1, A1 = 6, Ay = 3, A3 = 3,
k=l=m=1a9=1, by =1, w= —66. These soliton solutions typically represent
a localized and stable wave structure. The W-shaped profile reflects how energy
distributes over two regions while maintaining the soliton’s stability and localized
propagation characteristic. Figure 2 displays the solution’s dynamic behavior with
a periodic soliton structure for the solution us(z,y, 2,t) for the appropriate values
of parameters, 2z =0,t=0,r=0, A1 =6, Ao =3, A3=3, k=1l=m=1, a9 =5,
by = 1, w = 102. Periodic soliton solutions are unique soliton solutions that exhibit
spatially or temporally periodic behavior rather than decaying to zero at infinity
like traditional solitons. These solutions represent waves that propagate with stable
and periodic structures. Figure 3 displays the solution’s dynamic behavior with a
singular soliton structure for the solution wug(x,y, z,t) for the appropriate values of
paurameters,917=O,z=0,7‘:%7 A1 =6, A, =3, A43=3, k=1l=m=1,a9 =1,
by = 3, w = —12. Singular soliton solutions are a special wave solution characterized
by singularities such as infinite amplitude, acute cusps, or discontinuities at certain
places. Unlike smooth and localized regular solitons, these solutions defy traditional
expectations while maintaining remarkable stability, propagating consistently under
the equation’s governing dynamics. Their persistence highlights the delicate balance
of non-linearity and dispersion in complex systems. Figure 4 displays the solution’s
dynamic behavior with a periodic soliton structure for the solution u11(z,y, z,t) for
the appropriate values of parameters, x =0,t =0, r = %7 Ay =6, Ay, =3, A3 = 3,
k=l=m=1,a9=1, by = -3, w = —12. Figure 5 displays solution’s dynamic
behavior with a singular soliton structure for the solution uig(x,y, 2,t) for the ap-
propriate values of parameters, y = 0, 2 =0, r =0, A1 =1, Ao =1, A3 = 1,
k=l=m=1,a0=3,by=1,w=09.

6. CONCLUSION

We address the nonlinear (3 + 1)-dimensional ZK equation using a recently dis-
covered ¢%-model expansion technique and obtain novel travelling wave solutions to
the said equation in the form of Jacobi’s elliptic functions, which can be valuable
for researchers in studying and understanding the physical interpretation of the ZK
equation. The obtained solutions approach trigonometric solutions when r — 0 and
hyperbolic solutions when r» — 1. These results indicate that the employed method
has produced numerous novel and significant solutions to the considered equation.
Furthermore, we visualize specific solutions using 3—D and 2—D graphs.
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